CONVERYOR DESIGN REPORT
Contents
Take-up Displacement Summary 12
Belt Transition Length Requirements 19
Min/Max Tension Summary per Element 25
Te Tension Summary per Load Cases 26
Pulley Summary Table – All Cases 27
Element Tension Details per Case 28
Element Tension Breakdown – (EM) Empty – Normal 28
Element Tension Breakdown – (FL) Fully Loaded – Normal 29
Element Tension Breakdown – (FL) Fully Loaded – Low 30
Element Tension Breakdown – (FL) Fully Loaded – High 31
Element Tension Breakdown – (IF) All Inclines + Flat Sections – High 32
Element Tension Breakdown – (DO) Declines Only – Low 33
Given Input
12,000,000 ore tonnes should be delivered yearly from an underground facility to the grinding facility.
Hence, it 12000000 tonnes/365*24 = 1369.63 tonnes/ hour of material need to carry per hour.
The lowest temperature is -35C
Ore Density = 2900 kg/m3
Ore is abrasive hence lump size is 50mm
Pulley Friction = 0.35
System Information
Calculation method CEMA 5th
Conveyor Length / Height 3900 / 182.7 m
Material lift 182.6 m
Ambient temperature range -35 to 35 °C
Kt factor at minimum temperature 2.48
Material Properties
Type Crushed Ore
Design Tonnage 1390 t/h
Density 2900 kg/m3
Maximum lump size 50 mm
Surcharge angle 20 deg
Belt Properties
Type Steel cord
Width 650 mm
Rating 8500 N/mm
Speed 3.60 m/s
Top / bottom cover thickness 19.0 x 11.0 mm
Total thickness 44 mm
Weight (new / worn) 58.1 / 48.6 kg/m
Modulus 612,000 kN/m
Tape length 7,825 m
Belt cycle time 36.2 min
Tension Summary | Running | Momentary |
Maximum tension (kN) | 1,115 | 1,353 |
Minimum safety factor | 4.96 | 4.08 |
Minimum tension (kN) | 451 | 316 |
Maximum belt sag (%) | 0.04 | 0.05 |
Cross Sectional Loading
Material mass (wm) 107.3 kg/m
Combined mass (wm + wb) 165.3 kg/m
Edge distance (required / actual) 59 / 66 mm
Cross sectional area 0.037 m²
Cross sectional loading (utility / total) 88 % / 57 %
Bed depth 120 mm
Flooded belt tonnage 2,358 t/h
Flooded (wm + wb) 240.0 kg/m
Idler Set Data
Carry | Return | |
Series name | Series 20 | Series 20 |
Bearing | 6204 | 6204 |
Number of rolls | 3 | 2 |
Trough angle (deg) | 35 | 10 |
Type | Inline | Inline |
Idler spacing (m) | 0.80 | 2.40 |
Number of idler sets | 4,898 | 1,630 |
Roll diameter | 127 | 127 |
Roll rpm | 541 | 541 |
Total drag (N) | 8.0 | 5.4 |
Drag range (N) | 4.0 – 24.9 | 2.7 – 16.6 |
Roll length | 247 | 351 |
Shaft diameter (mm) | 20.0 | 20.0 |
Dynamic capacity (kN) | 13.5 | 13.5 |
L10 life1 (1000 hrs) | 24.5 / 39.9 | 108.0 |
Shaft deflection (min) | 5.09 / 8.24 | 6.61 |
1 L10 life above which 95% of idlers exceed
Drive Station
Type Not Specified
Synchronous RPM 1800 RPM
Motor quantity / rating 1 / 2800 kW
Total installed power 2800 kW
Nominal empty / full power (42 / 76%) 1167 / 2125 kW
Min / max demand power (11 / 83%) 321 / 2330 kW
Frame Size IEC 630L
Motor Voltage Not Specified
Efficiency 94.5 to 97.5%
Maximum starting torque 150%
Inertia – Motor 194.2 kg·m²
Pulley lagging type Rubber
Motor wrap angles 180
Lagging friction factor (run / accel) 0.32 / 0.38
Take-up Data
Type Gravity
Location Tail / Pulley #2
Required belt line tension 516 kN
Cable reeving ratio (trolley:counterweight) 1:1
Counterweight mass 105.2 tonnes
Required pulley displacement 16.49 m
Dynamic displacement (incl thermal) 4.26 m
Permanent elongation 3.91 m
Splice length (2 included) 7.32 m
Clearance 1.00 m
Backstops
Backstop type None installed
Brakes
Brake type None installed
Reducer Information
Manufacture N/A
Frame size N/A
Reducer ratio 65.550
Catalog reducer ratio 0.000
RPM (High Speed) 1800 RPM
RPM (Low Speed) 27.5 RPM
Configuration Shaft Mount
Number of stages 3
Service factor 1.4
Power rating 0
Motor Torque
100% Motor Torque – High Speed 15,081 N·m
Motor Shaft Torque – Running (FN) 11,444 N·m
Motor Shaft Torque – Starting (FN) 22,621 N·m
100% Motor Torque – Low Speed 988,538 N·m
Low Speed Shaft Torque – Running (FN) 710,084 N·m
Low Speed Shaft Torque – Running (Max) 772,483 N·m
Low Speed Shaft Torque – Starting (FN) 1,165,791 N·m
Low Speed Shaft Torque – Starting (Max) 1,182,660 N·m
Starting and Stopping
Start control Constant torque
Start time 3.3 to 10.4 s
Emergency stop control Drift
Emergency stop time 8.4 to 39.9 s
Material buildup in chute 2.7 m³
Tension Ratios
Allowable (running) 2.73
Running tension ratio 2.19
Allowable (dynamic) 3.30
Starting tension ratio 3.19
Transition Lengths
Transition method CEMA 7
Tail transition length (inline) 3.40 m
Head transition length (inline) 4.50 m
Estimated Splice Data
Splice type 5-Step
Splice step length 1350 mm
Transition length (each side) 150 mm
22 degree bias angle 265 mm
Total splice length 7315 mm
Cable diameter 14.3 mm
Number of cables 31
Cable pitch / cable gap in splice 18.79 / 1.41 mm
Take-Up Cable
Counterweight mass 105.2 tonnes
Cable reeving ratio (trolley:counterweight) 1:1
Take-up cable tension 1032.0 kN
Cable diameter 0.0 mm
Cable breaking strength (1800 MPa) 0.0 kN
Safety factor 0.0
Number of clips (crosby clamps) 3
Turnback / free end length 150 / 35 mm
Sheave Root Diam 0 mm
Other Information
Loaded beltline mass (excluding motors) 956,415 kg
Total inertia (ref HS shaft) 360 kg·m2
Demand Power (kW)
Case | Demand power | % Motor Nameplate |
Empty – NF | 1167 | 41.7 |
Full – NF | 2125 | 75.9 |
Full – LF | 1193 | 42.6 |
Full – HF | 2330 | 83.2 |
Inclines+Flat – HF | 2330 | 83.2 |
Declines – LF | 321 | 11.5 |
Din Factor and Total Equivalent Mass
Case | Din factor | Belt line mass (kg) |
Empty – NF | 0.0589 | 1,053,554 |
Full – NF | 0.0399 | 1,472,883 |
Full – LF | 0.0145 | 1,398,619 |
Full – HF | 0.0448 | 1,478,987 |
Inclines+Flat – HF | 0.0448 | 1,478,987 |
Declines – LF | 0.0175 | 979,290 |
Maximum Belt Tensions (kN)
Case | Running | Dynamic |
Empty – NF | 809 | 1,023 |
Full – NF | 1,071 | 1,337 |
Full – LF | 885 | 1,272 |
Full – HF | 1,115 | 1,353 |
Inclines+Flat – HF | 1,115 | 1,353 |
Declines – LF | 645 | 900 |
Belt Safety Factor
Case | Running | Dynamic |
Empty – NF | 6.83 | 5.40 |
Full – NF | 5.16 | 4.13 |
Full – LF | 6.24 | 4.34 |
Full – HF | 4.96 | 4.08 |
Inclines+Flat – HF | 4.96 | 4.08 |
Declines – LF | 8.57 | 6.14 |
Minimum Belt Tensions (kN)
Case | Running | Dynamic |
Empty – NF | 456 | 316 |
Full – NF | 456 | 387 |
Full – LF | 507 | 418 |
Full – HF | 451 | 389 |
Inclines+Flat – HF | 451 | 389 |
Declines – LF | 507 | 342 |
Maximum Belt Sag (%)
Case | Running | Dynamic |
Empty – NF | 0.04 | 0.05 |
Full – NF | 0.04 | 0.04 |
Full – LF | 0.03 | 0.03 |
Full – HF | 0.04 | 0.04 |
Inclines+Flat – HF | 0.04 | 0.04 |
Declines – LF | 0.03 | 0.04 |
Conveyor Profile
Overall length = 3900 m – Overall height = 182.7 m – True Length = 3911.7 m
Tail Arrangement | Head Arrangement |
Maximum Pulley Tensions (without any additional safety factors) | ||||||||
Pulley | Type | Wrap (deg) | Steady State Tensions (kN) | Momentary Tensions (kN) | ||||
T1 | T2 | Resultant Force | T1 | T2 | Resultant Force | |||
Motor 1 | 1-HT | 180 | 1,115 | 569 | 1,623 | 1,353 | 617 | 1,967 |
Take-up Pulley | 2-MT | 180 | 516 | 1,034 | 516 | 1,034 |
T1 & T2 values may not be from the same load cases. Therefore the max resultant force is not the vector sum of these values.
Pulley Shaft Results | |||||||||||
Pulley # | Safety Factor | Shaft Slope at Hub (min) | Shaft Deflection at Center (% span) | Bearing L10 Life 1000 hrs | Design T1 Tension (kN) | Design T2 Tension (kN) | Pulley & Shaft Mass (kg) | Resultant Force (kN) | Resultant Angle (deg) | Resultant Torque (kN·m) | Bending Moment (kN·m) |
1 | 1.74 | 0.39 | 0.008 | 197 | 1,226 | 560 | 11918 | 1,807 | 192 | 847.3 | 580.4 |
2 | 1.60 | 0.58 | 0.011 | 126 | 645 | 647 | 6867 | 1,291 | 360 | 2.3 | 350.1 |
Design tensions for shaft fatigue are based on all design level 1 cases. Running tensions have an added multiplier of 1.10 on high tension pulleys, and a multiplier of 1.25 on all other pulleys.
Pulley Geometry Details (Pulley Types) | |||||||||||
Type | Lagging Type | Diameter (mm) | Lagging Thickness (mm) | Diameter with Lagging (mm) | Face Width (mm) | Shaft Center Diameter (mm) | Bearing Diameter (mm) | Bearing Center Distance (mm) | Plummer Block | Bearing Series | Pulley Shaft Bearing Mass (kg) |
1 | Rubber | 2500 | 10.0 | 2520 | 750 | 600 | 500 | 1800 | 30/530 | 230/530 | 18,157 |
2 | Rubber | 2000 | 10.0 | 2020 | 750 | 480 | 400 | 1600 | 3084 | 23084 | 10,166 |
Pulley Shaft Information | |||||||||||
Type | Locking Device | Shaft Material | Tensile Strength (MPa) | Yield Strength (MPa) | Fatigue Strength (MPa) | Hub Diameter (mm) | Hub Center Distance (mm) | Bearing to Fillet Distance (mm) | Fillet Radius (mm) | Overhung Load (kN) | Overhung Moment Arm (mm) |
1 | B-LOC 115 | SAE 1018 | 400.0 | 220.0 | 200.0 | 600 | 515 | 240 | 150 | 0.0 | 0 |
2 | B-LOC 115 | SAE 1018 | 400.0 | 220.0 | 200.0 | 480 | 515 | 205 | 120 | 0.0 | 0 |
Conveyor Load Cases
During the course of operation, the conveyor experiences different operating conditions at various frequencies. Normal operating conditions, such as steady state running, loading and unloading, and other common load cases are designated as Design Level 1. Unusual operating conditions, such as when all incline or decline section are simultaneously loaded, are defined as Design Level 2. These design levels allow easy summarization of the various possible loading conditions.
For this conveyor, there are two Design Level 1 loads, which are:
1. Empty
2. Fully Loaded
In the load case figures, the red line is the conveyor profile and the blue line indicates positions that are loaded.
Empty
Fully Loaded (Material Lift = 182.6 m)
There are two Design Level 2 loads, which are:
1. All Inclines + Flat Sections
2. Declines Only
All Inclines + Flat Sections
Declines Only
Take-up Displacement Summary
1. Type Gravity
2. Location Tail / Pulley #2
3. Belt line tension 516 kN
4. Take-up pulley displacement range
a. Running -3.45 to 0.00 m
b. Momentary -4.10 to 0.16 m
Take-up Pulley Displacement Summary
1. Dynamic displacement (incl thermal) 4.26 m
2. Permanent elongation 3.91 m
3. Splice length (2 included) 7.32 m
4. Clearance 1.00 m
5. Required displacement 16.49 m
Counterweight Displacement Summary (1:1 Cable Reeving Ratio)
1. Dynamic displacement 4.26 m
2. Permanent elongation 3.91 m
3. Splice length (2 included) 7.32 m
4. Clearance 1.00 m
5. Required displacement 16.49 m
Pulley Details
The following table lists recommended pulley design tensions. The first column lists belt tensions for bearing L10 life and pulley fatigue stress calculations. Belt tensions for the fatigue design criterion are based on all design level 1 cases. Running tensions have an added multiplier of 1.10 on high tension pulleys, and a multiplier of 1.25 on all other pulleys.
Pulleys are also to be design for the structural design tensions. For structural design tensions, the pulley manufacturer is to ensure that the pulleys will be adequate to meet these worst case conditions.
Pulley Design Tensions (added safety factors as described above) | ||||||||
Pulley | Type | Wrap (deg) | Fatigue Design Tensions (kN) | Structural Design Tension (kN) | ||||
T1 | T2 | Resultant Force | T1 | T2 | Resultant Force | |||
Motor 1 | 1-HT | 180 | 1,226 | 560 | 1,807 | 1,489 | 679 | 2,188 |
Take-up Pulley | 2-MT | 180 | 645 | 1,291 | 568 | 1,136 |
Required Pulley Diameter (Tension based on a safety factor of 6.67) | |||||||
Pulley | Location | Pulley Type | Wrap (deg) | Diameter (mm) | Required Pulley Diameter (mm) | % Running Tension | % Momentary tension |
Motor 1 | Head (12) | 1 – HT | 180 | 2500 | 2500 | 135 | 163 |
Take-up Pulley | Tail (27) | 2 – MT | 180 | 2000 | 2000 | 63 | 63 |
Pulley Shaft Stress Analysis (Individual Pulleys) | ||||||||||
Pulley# | Type | Safety Factor | Shaft Slope at Hub (min) | Hub Bending Stress (MPa) | Hub Torsion Stress (MPa) | Fillet Bending Stress (MPa) | Fillet Torsion Stress (MPa) | Fillet Von Mises Stress (MPa) | Hub Von Mises Stress (MPa) | Overhung Von Mises Stress (MPa) |
1 | 1 | 1.74 | 0.39 | 27.4 | 20.0 | 23.6 | 34.5 | 44.1 | 64.3 | 0.0 |
2 | 2 | 1.60 | 0.58 | 32.2 | 0.1 | 28.2 | 0.2 | 32.2 | 28.2 | 0.0 |
Running Drive Tensions by Load Case (kN) | |||
Load Case | Motor 1 | ||
T1 | T2 | Resultant Force | |
Empty – NF | 809 | 514 | 1,323 |
Full – NF | 1,071 | 514 | 1,585 |
Full – LF | 885 | 569 | 1,455 |
Full – HF | 1,115 | 509 | 1,623 |
Inclines+Flat – HF | 1,115 | 509 | 1,623 |
Declines – LF | 645 | 569 | 1,214 |
Pulley Tension Summary – All Load Cases and Conditions | ||||||||||
Load Case | Pulley | Running | Starting | O-Stop | E-Stop | |||||
ID | Description | T1 (kN) | T2 (kN) | T1 (kN) | T2 (kN) | T1 (kN) | T2 (kN) | T1 (kN) | T2 (kN) | |
EM-N | Empty – NF | Motor 1 | 809 | 514 | 1,023 | 325 | 727 | 587 | 727 | 587 |
Take-up Pulley | 516 | 517 | 516 | 518 | 516 | 517 | 516 | 517 | ||
FL-N | Full – NF | Motor 1 | 1,071 | 514 | 1,337 | 421 | 799 | 609 | 799 | 609 |
Take-up Pulley | 516 | 517 | 516 | 517 | 516 | 517 | 516 | 517 | ||
FL-L | Full – LF | Motor 1 | 885 | 569 | 1,272 | 449 | 731 | 617 | 731 | 617 |
Take-up Pulley | 516 | 517 | 516 | 517 | 516 | 517 | 516 | 517 | ||
FL-H | Full – HF | Motor 1 | 1,115 | 509 | 1,353 | 425 | 816 | 613 | 816 | 613 |
Take-up Pulley | 516 | 518 | 516 | 518 | 516 | 518 | 516 | 518 | ||
IF-H | Inclines+Flat – HF | Motor 1 | 1,115 | 509 | 1,353 | 425 | 816 | 613 | 816 | 613 |
Take-up Pulley | 516 | 518 | 516 | 518 | 516 | 518 | 516 | 518 | ||
DO-L | Declines – LF | Motor 1 | 645 | 569 | 900 | 348 | 624 | 588 | 624 | 588 |
Take-up Pulley | 516 | 517 | 516 | 517 | 516 | 517 | 516 | 517 |
#1 – Motor 1
Pulley Location and Geometry
1. Name (Type-1) Motor 1
2. Pulley Diameter 2500 mm
3. Face Width 750 mm
Lagging
4. Lagging Type Rubber
5. Lagging Thickness 10 mm
6. Diameter with lagging 2520 mm
Shaft Specification
7. Shaft Center Diameter 600 mm
8. Shaft Material SAE 1018
9. Yield Strength 220.0 MPa
10. Fatigue Strength 200.0 MPa
Locking Device
11. Hub Center Distance 515 mm
12. Shaft diameter at hub 600 mm
13. Turndown radius at hub 0 mm
14. Locking Device B-LOC 115
15. Size 600 x 695
16. Hub width 175 mm
17. Hub pressure 130.0 N/mm²
18. Maximum torque 1,228,856 N·m
19. Hub outer diameter 1371 mm
Bearing Specifications
20. Bearing Center Distance 1800 mm
21. Shaft diameter at bearing 500 mm
22. Bearing to Fillet Distance 240 mm
23. Turndown radius at bearing 150 mm
24. Bearing 230/530
25. SNL Plummer Block 30/530
26. Dynamic Capacity 5,100 kN
27. Bearing L10 197,435 hours
Design Tensions and Loads
28. Running T1 Tension 1,071 kN
29. Running T2 Tension 514 kN
30. Design T1 Tension 1,226 kN
31. Design T2 Tension 560 kN
32. Wrap angle 180 deg
33. Design Resultant Tension 1,807 kN
34. Resultant Angle 192 deg
35. Resultant Moment 580 kN·m
36. Resultant Torque 847 kN·m
37. Estimated Pulley & Shaft Mass 11,918 kg
38. Estimated Mass with Bearings 18,157 kg
Shaft Stresses & Deflections
39. Shaft slope at hub 0.39 min
40. Shaft slope at bearing 0.95 min
41. Shaft deflection at center 0.15 mm
42. Shaft deflection at center (%) 0.008
43. Shaft Safety Factor (CEMA) 1.74
44. Shaft Safety Factor (AS1403) 1.97
45. Bending Stress 27.4 MPa
46. Torsional Stress 20.0 MPa
47. Von Mises Stress 44.1 MPa
48. Fillet Von Mises Stress 64.3 MPa
Shell Dimension and Stresses
49. Shell thickness 50 mm
50. Sitzwohl reqd shell thickness1 121 mm
51. Sitzwohl shell stress 153.1 MPa
52. Shell stress at 180 wa 153.1 MPa
1 Assumes 180 deg wrap and allowable stress of 34.0 MPa
End Disk Dimension and Stresses
53. End disk thickness 61 mm
54. End disk stress 15.0 MPa
#2 – Take-up Pulley
Pulley Location and Geometry
1. Name (Type-2) Take-up Pulley
2. Pulley Diameter 2000 mm
3. Face Width 750 mm
Lagging
4. Lagging Type Rubber
5. Lagging Thickness 10 mm
6. Diameter with lagging 2020 mm
Shaft Specification
7. Shaft Center Diameter 480 mm
8. Shaft Material SAE 1018
9. Yield Strength 220.0 MPa
10. Fatigue Strength 200.0 MPa
Locking Device
11. Hub Center Distance 515 mm
12. Shaft diameter at hub 480 mm
13. Turndown radius at hub 0 mm
14. Locking Device B-LOC 115
15. Size 480 x 575
16. Hub width 175 mm
17. Hub pressure 131.0 N/mm²
18. Maximum torque 819,237 N·m
19. Hub outer diameter 1142 mm
Bearing Specifications
20. Bearing Center Distance 1600 mm
21. Shaft diameter at bearing 400 mm
22. Bearing to Fillet Distance 205 mm
23. Turndown radius at bearing 120 mm
24. Bearing 23084
25. SNL Plummer Block 3084
26. Dynamic Capacity 3,400 kN
27. Bearing L10 125,972 hours
Design Tensions and Loads
28. Running T1 Tension 516 kN
29. Running T2 Tension 517 kN
30. Design T1 Tension 645 kN
31. Design T2 Tension 647 kN
32. Wrap angle 180 deg
33. Design Resultant Tension 1,291 kN
34. Resultant Angle 360 deg
35. Resultant Moment 350 kN·m
36. Resultant Torque 2.30 kN·m
37. Estimated Pulley & Shaft Mass 6,867 kg
38. Estimated Mass with Bearings 10,166 kg
Shaft Stresses & Deflections
39. Shaft slope at hub 0.58 min
40. Shaft slope at bearing 1.28 min
41. Shaft deflection at center 0.18 mm
42. Shaft deflection at center (%) 0.011
43. Shaft Safety Factor (CEMA) 1.60
44. Shaft Safety Factor (AS1403) 2.70
45. Bending Stress 32.2 MPa
46. Torsional Stress 0.1 MPa
47. Von Mises Stress 32.2 MPa
48. Fillet Von Mises Stress 28.2 MPa
Shell Dimension and Stresses
49. Shell thickness 45 mm
50. Sitzwohl reqd shell thickness1 91 mm
51. Sitzwohl shell stress 112.6 MPa
52. Shell stress at 180 wa 112.6 MPa
1 Assumes 180 deg wrap and allowable stress of 34.0 MPa
End Disk Dimension and Stresses
53. End disk thickness 61 mm
54. End disk stress 25.3 MPa
Belt Flap Summary
Belt flap may occur when the natural frequency of the belt matches the rotational frequency of the idlers. If belt flap is severe, it can destroy the idlers and increase the demand power of the conveyor. Belt flap should be avoided.
The belt flap ratio is defined as the rotational frequency of the idler divided by the natural frequency of the belt. If this ratio is equal to an integer (i.e. 1, 2, 3) then the idler may induce transverse vibrations at the natural frequency mode and result in resonance.
The chart below shows the flap ratio along the length of the conveyor. The solid green line shows flap mode of the empty belt under the normal friction case. The shaded pink areas should be avoided.
* Belt flap resonance occurs at flap ratios 1, 2, 3, and 4
Material Trajectory
The image below shows the material trajectory for the fully loaded normal friction case.
Material Trajectory
Belt Transition Length Requirements
The table below lists the required transition length at head and tail pulleys. Transition lengths are based on the CEMA 7th Method. The figure below shows the geometry of the inline transition and elevated pulley transition.
Geometry of inline and elevated pulley transition
Required transition lengths | ||
Tail pulley transition (m) | Head pulley transition (m) | |
Inline transition (L1) | 3.38 | 4.42 |
Elevated pulley transition (L2) | 2.28 | 2.93 |
Pulley elevation (h) | 38.525 | 38.525 |
Material Loading Profiles
Material Properties
Type Crushed Ore
Design Tonnage 1390 t/h
Density 2900 kg/m3
Maximum lump size 50 mm
Surcharge angle 20 deg
Tonnage 1390 t/h
Belt speed 3.60 m/s
Material mass 107.3 kg/m
Edge distance (required / actual) 59 / 66 mm
Cross sectional loading (utility / total) 88 % / 57 %
Bed depth 120 mm
Idler Specifications
Idler Specifications | ||
Type | Equal Roll Trough | VEE |
Number of rolls | 3 | 2 |
Trough angle (deg) | 35 | 10 |
Roll diameter (mm) | 127 | 127 |
Roll length (mm) | 247 | 351 |
Shaft diameter (mm) | 20.0 | 20.0 |
Bearing series | 6204 | 6204 |
Maximum roll RPM | 541 | 541 |
Min Life (1000 hrs) | 21 / 34 | 108 |
95% life1 (1000 hrs) | 24 / 40 | 108 |
Shaft deflection (min) | 5.09 / 8.24 | 6.61 |
Mass per Roll (kg) | 3.4 | 4.6 |
Rotating mass for set (kg) | 10.3 | 9.2 |
Wk2 for set (kg·mm²) | 35,486 | 32,395 |
Idler Spacing and Count Summary | ||
General | Carry | Return |
Idler spacing (m) | 0.80 | 2.40 |
Number of idler sets | 4,898 | 1,630 |
Number of rolls | 14,694 | 3,260 |
Total drag (N) | ||
Nominal friction | 8.0 | 5.4 |
High friction | 24.9 | 16.6 |
Low friction | 4.0 | 2.7 |
Idler Life and Shaft Deflection Summary-Carry Side | |||||||||
# | Station (m) | Length (m) | Vertical Radius (m) | Idler Spacing (m) | Idler Type | Wing L10 Life (hours) | Center L10 Life (hours) | Wing Shaft Deflection (min) | Center Shaft Deflection (min) |
1 | 0.0 | 2.0 | 0.80 | 1 | 118,320 | 350,000 | 2.44 | 3.35 | |
2 | 2.0 | 3.0 | 0.25 | 1 | 28,590 | 43,731 | 4.28 | 7.68 | |
3-12 | 5.0 | 3,906.7 | 0.80 | 1 | 20,794 | 34,275 | 5.09 | 8.24 |
Idler Life and Shaft Deflection Summary-Return Side | |||||||||
# | Station (m) | Length (m) | Vertical Radius (m) | Idler Spacing (m) | Idler Type | Wing L10 Life (hours) | Center L10 Life (hours) | Wing Shaft Deflection (min) | Center Shaft Deflection (min) |
14-27 | 3,900.1 | 3,911.8 | 2.40 | 2 | 108,043 | 6.61 |
Structural Loads
The live load structural design tensions should be based on the maximum dynamic tensions plus 10% (to account for misalignment and abnormalities in the belt, pulleys, and structures). Additionally they must include any other external loads (wind & snow loads, seismic, etc.) that the system will encounter. These forces must then be multiplied by the required live load structural design safety factor requirements (typically 1.6) to meet the specific structural design codes for the project.
The dead load structural design loads must be calculated from the masses of the pulleys, drives, reducers, and other components. These loads are not included in this report as they will depend on the specific manufacture selection and other details. These forces must then be multiplied by the required dead load structural design safety factor requirements (typically 1.2) to meet the specific structural design codes for the project. The live and dead loads are then added together to obtain the total structural design forces.
The table below includes the belt tensions from all current load cases. Additionally, steady state and dynamic tensions for the high friction case with 1,390 t/h have also been included. This specific load case results in 59% nameplate motor power, excluding any reducer losses. The starting torque has been set to 150% for this case. The maximum tension values have been multiplied by 110% and the pulley shaft calculations shown in the table reflect these values. The minimum tensions have been reduced by 10%. The resultant force values include the vertical weight of the pulley.
Structural Live Loads – Includes case with 1,390 t/h under steady state and dynamic conditions + 110% multiplier | |||||||||||
Pulley | Type | Wrap (deg) | Shaft Hub Slope (min) | Shaft stress safety factor | Shaft Center Def. (mm) | Minimum Tensions (kN) | Maximum Tensions (kN) | ||||
T1 | T2 | Resultant Force | T1 | T2 | Resultant Force | ||||||
Motor 1 | 1 | 180 | 0.47 | 1.71 | 0.18 | 561 | 292 | 879 | 1,489 | 679 | 2,188 |
Take-up Pulley | 2 | 180 | 0.51 | 1.60 | 0.16 | 464 | 929 | 568 | 1,136 |
Bearing Reaction Forces (excluding any overhung loads) | ||||||||||
Pulley | Wrap (deg) | Entry Vector Angle (deg) | Exiting Vector Angle (deg) | Pulley, Shaft & Bearings Mass (kg) | Bearing Horizontal Direction (kN) | Bearing Vertical Direction (kN) | ||||
Structural Min Tension | FL-N Case | Structural Max Tension | Structural Min Tension | FL-N Case | Structural Max Tension | |||||
Motor 1 | 180 | 189 | 189 | 18,157 | -844 | -1,568 | -2,144 | -305 | -413 | -500 |
Take-up Pulley | 180 | 3 | 3 | 10,166 | 928 | 1,032 | 1,136 | -53.3 | -48.1 | -42.9 |
The idler stringer loading should be based on the flooded belt surge capacity of 2,358 t/h and 240.0 kg/m plus the idler and frame masses. Additionally, all other loads (hood covers, wind loads, etc.) must also be taken into consideration.
Element Summary Details
Tension Summary
Power Summary
Element Summary Details
Summary of Conveyor Elements | |||||||||
# | Name | Station (m) | Elevation (m) | Length (m) | Height (m) | Slope (deg) | Vertical Radius (m) | Idler Spacing (m) | Idler Type |
1 | 0.0 | 0.00 | 2.0 | 0.10 | 2.86 | 0.80 | 1 | ||
2 | Loading Point | 2.0 | 0.10 | 3.0 | 0.15 | 2.86 | 0.25 | 1 | |
3 | 5.0 | 0.25 | 395.5 | 19.75 | 2.86 | 0.80 | 1 | ||
4 | 400.0 | 20.00 | 416.7 | 2.11 | 0.29 | 0.80 | 1 | ||
5 | 816.7 | 22.11 | 416.7 | 2.11 | 0.29 | 0.80 | 1 | ||
6 | 1,233.3 | 24.22 | 416.7 | 2.11 | 0.29 | 0.80 | 1 | ||
7 | 1,650.0 | 26.33 | 416.7 | 2.11 | 0.29 | 0.80 | 1 | ||
8 | 2,066.7 | 28.44 | 416.7 | 2.11 | 0.29 | 0.80 | 1 | ||
9 | 2,483.3 | 30.54 | 416.7 | 2.11 | 0.29 | 0.80 | 1 | ||
10 | 2,900.0 | 32.65 | 337.1 | 50.00 | 8.53 | 0.80 | 1 | ||
11 | 3,233.3 | 82.65 | 337.1 | 50.00 | 8.53 | 0.80 | 1 | ||
12 | 3,566.7 | 132.65 | 337.1 | 50.00 | 8.53 | 0.80 | 1 | ||
13 | Motor 1 | 3,900.0 | 182.65 | 0.8 | -0.79 | — | |||
14 | 3,900.1 | 181.86 | 1.0 | -0.15 | -8.53 | 2.40 | 2 | ||
15 | 3,899.1 | 181.71 | 336.2 | -49.81 | -8.52 | 2.40 | 2 | ||
16 | 3,566.7 | 131.90 | 337.1 | -50.00 | -8.53 | 2.40 | 2 | ||
17 | 3,233.3 | 81.90 | 337.1 | -50.00 | -8.53 | 2.40 | 2 | ||
18 | 2,900.0 | 31.90 | 416.7 | -2.11 | -0.29 | 2.40 | 2 | ||
19 | 2,483.3 | 29.79 | 416.7 | -2.11 | -0.29 | 2.40 | 2 | ||
20 | 2,066.7 | 27.69 | 416.7 | -2.11 | -0.29 | 2.40 | 2 | ||
21 | 1,650.0 | 25.58 | 416.7 | -2.11 | -0.29 | 2.40 | 2 | ||
22 | 1,233.3 | 23.47 | 416.7 | -2.11 | -0.29 | 2.40 | 2 | ||
23 | 816.7 | 21.36 | 416.7 | -2.11 | -0.29 | 2.40 | 2 | ||
24 | 400.0 | 19.25 | 395.5 | -19.75 | -2.86 | 2.40 | 2 | ||
25 | 5.0 | -0.50 | 3.0 | -0.15 | -2.86 | 2.40 | 2 | ||
26 | 2.0 | -0.65 | 1.0 | -0.10 | -5.88 | 2.40 | 2 | ||
27 | 1.0 | -0.75 | 1.0 | -0.05 | -2.86 | 2.40 | 2 | ||
28 | Take-up Pulley | 0.0 | -0.80 | 0.8 | 0.80 | — |
Min/Max Tension Summary per Element
Element Tension (kN) | |||||||
# | Name | Running | Momentary | ||||
Maximum | Minimum | %Sag | Maximum | Minimum | %Sag | ||
1 | 518 | 517 | 0.01 | 518 | 517 | 0.01 | |
2 | Loading Point | 518 | 517 | 0.01 | 518 | 517 | 0.01 |
3 | 521 | 518 | 0.03 | 521 | 517 | 0.03 | |
4 | 583 | 548 | 0.03 | 607 | 528 | 0.03 | |
5 | 618 | 570 | 0.03 | 668 | 532 | 0.03 | |
6 | 653 | 583 | 0.03 | 728 | 534 | 0.03 | |
7 | 688 | 596 | 0.03 | 789 | 530 | 0.03 | |
8 | 723 | 608 | 0.03 | 849 | 526 | 0.03 | |
9 | 758 | 621 | 0.02 | 910 | 523 | 0.03 | |
10 | 793 | 633 | 0.02 | 971 | 519 | 0.03 | |
11 | 901 | 717 | 0.02 | 1,098 | 573 | 0.03 | |
12 | 1,008 | 765 | 0.02 | 1,226 | 598 | 0.02 | |
13 | Motor 1 | 1,115 | 809 | 0.00 | 1,353 | 624 | 0.00 |
14 | 569 | 509 | 0.03 | 617 | 325 | 0.05 | |
15 | 569 | 509 | 0.03 | 617 | 325 | 0.05 | |
16 | 549 | 490 | 0.04 | 592 | 322 | 0.05 | |
17 | 528 | 470 | 0.04 | 567 | 319 | 0.05 | |
18 | 507 | 451 | 0.04 | 542 | 316 | 0.05 | |
19 | 509 | 462 | 0.04 | 539 | 346 | 0.05 | |
20 | 512 | 473 | 0.04 | 537 | 376 | 0.05 | |
21 | 514 | 484 | 0.04 | 534 | 406 | 0.04 | |
22 | 517 | 494 | 0.04 | 532 | 437 | 0.04 | |
23 | 520 | 505 | 0.03 | 529 | 467 | 0.04 | |
24 | 522 | 516 | 0.03 | 527 | 497 | 0.03 | |
25 | 516 | 516 | 0.03 | 516 | 516 | 0.03 | |
26 | 516 | 516 | 0.03 | 516 | 516 | 0.03 | |
27 | 516 | 516 | 0.03 | 516 | 516 | 0.03 | |
28 | Take-up Pulley | 516 | 516 | 0.00 | 516 | 516 | 0.00 |
Te Tension Summary per Load Cases
Belt Tension Summary per Load Case (N) | ||||||
| EM-N | FL-N | FL-L | FL-H | IF-H | DO-L |
Total (Beltline) | 295,162 | 557,223 | 315,388 | 605,588 | 605,588 | 75,075 |
Total (Power) | 324,041 | 590,230 | 331,522 | 647,281 | 647,281 | 89,106 |
Lift Force | 0 | 192,009 | 192,009 | 192,009 | 192,009 | 0 |
Frictional Drag | 295,162 | 365,214 | 123,379 | 413,579 | 413,579 | 75,075 |
Motor Pulley/Reducer Drag | 28,880 | 33,007 | 16,134 | 41,692 | 41,692 | 14,031 |
Rolling Resistance | 171,561 | 237,357 | 92,012 | 255,214 | 255,214 | 47,929 |
Material+Belt Flexure | 0 | 0 | 0 | 0 | 0 | 0 |
Idler Bearing Drag | 119,413 | 119,413 | 24,032 | 149,267 | 149,267 | 24,032 |
Idler Alignment | 3,029 | 5,826 | 5,331 | 5,866 | 5,866 | 2,534 |
Pulleys & Accessories | 895 | 895 | 447 | 1,342 | 1,342 | 447 |
Loading Point | 263 | 1,723 | 1,557 | 1,890 | 1,890 | 132 |
Mechanical Losses | 27,421 | 31,549 | 15,405 | 39,505 | 39,505 | 13,302 |
Motor Pulley Drag Components | 1,458 | 1,458 | 729 | 2,188 | 2,188 | 729 |
Pulley Summary Table – All Cases
Pulley Geometry Details | ||
Type | 1 | 2 |
Lagging Type | Rubber | Rubber |
Diameter (mm) | 2500 | 2000 |
Lagging Thickness (mm) | 10.0 | 10.0 |
Diameter with Lagging (mm) | 2520 | 2020 |
Face Width (mm) | 750 | 750 |
Shaft Center Diameter (mm) | 600 | 480 |
Bearing Diameter (mm) | 500 | 400 |
Bearing Center Distance (mm) | 1800 | 1600 |
Plummer Block | 30/530 | 3084 |
Pulley & Shaft Mass (kg) | 11,918 | 6,867 |
Locking Device | B-LOC 115 | B-LOC 115 |
Hub Center Distance (mm) | 515 | 515 |
Hub Diameter (mm) | 600 | 480 |
Bearing to Fillet Distance (mm) | 240 | 205 |
Fillet Radius (mm) | 150 | 120 |
Shaft Material | SAE 1018 | SAE 1018 |
Yield Strength (MPa) | 220.0 | 220.0 |
Fatigue Strength (MPa) | 200.0 | 200.0 |
Element Tension Details per Case
Element Tension Breakdown – (EM) Empty – Normal
Individual drag components per element | ||||||||||
# | Running Tension (N) | Running Ten Diff (N) | Element Tonnage (t/h) | Wm+Wb (kg/m) | Lift Force (N) | Belt Force (N) | Idler Force (N) | Pulley Drag Force (N) | Feeder Pt. Force (N) | Extra Accessory Force (N) |
1 | 517,350 | 153 |
| 58.1 | 57 | 45 | 51 |
|
|
|
2 | 517,503 | 657 |
| 58.1 | 85 | 68 | 241 |
| 263 |
|
3 | 518,160 | 30,217 |
| 58.1 | 11,247 | 8,953 | 10,018 |
|
|
|
4 | 548,377 | 21,187 |
| 58.1 | 1,201 | 9,432 | 10,554 |
|
|
|
5 | 569,564 | 21,187 |
| 58.1 | 1,201 | 9,432 | 10,554 |
|
|
|
6 | 590,751 | 21,187 |
| 58.1 | 1,201 | 9,432 | 10,554 |
|
|
|
7 | 611,938 | 21,187 |
| 58.1 | 1,201 | 9,432 | 10,554 |
|
|
|
8 | 633,124 | 21,187 |
| 58.1 | 1,201 | 9,432 | 10,554 |
|
|
|
9 | 654,311 | 21,187 |
| 58.1 | 1,201 | 9,432 | 10,554 |
|
|
|
10 | 675,498 | 44,640 |
| 58.1 | 28,473 | 7,630 | 8,538 |
|
|
|
11 | 720,138 | 44,640 |
| 58.1 | 28,473 | 7,630 | 8,538 |
|
|
|
12 | 764,778 | 44,640 |
| 58.1 | 28,473 | 7,630 | 8,538 |
|
|
|
13 – M | 809,419 | -295,612 |
| 58.1 | -451 |
|
| 890 |
| 569 |
14 | 513,806 | -57 |
| 58.1 | -84 | 21 | 6 |
|
|
|
15 | 513,749 | -19,237 |
| 58.1 | -28,365 | 7,134 | 1,993 |
|
|
|
16 | 494,512 | -19,321 |
| 58.1 | -28,473 | 7,153 | 1,999 |
|
|
|
17 | 475,191 | -19,321 |
| 58.1 | -28,473 | 7,153 | 1,999 |
|
|
|
18 | 455,870 | 10,112 |
| 58.1 | -1,201 | 8,842 | 2,471 |
|
|
|
19 | 465,982 | 10,112 |
| 58.1 | -1,201 | 8,842 | 2,471 |
|
|
|
20 | 476,094 | 10,112 |
| 58.1 | -1,201 | 8,842 | 2,471 |
|
|
|
21 | 486,207 | 10,112 |
| 58.1 | -1,201 | 8,842 | 2,471 |
|
|
|
22 | 496,319 | 10,112 |
| 58.1 | -1,201 | 8,842 | 2,471 |
|
|
|
23 | 506,431 | 10,112 |
| 58.1 | -1,201 | 8,842 | 2,471 |
|
|
|
24 | 516,544 | -509 |
| 58.1 | -11,247 | 8,393 | 2,345 |
|
|
|
25 | 516,035 | -4 |
| 58.1 | -85 | 64 | 18 |
|
|
|
26 | 516,031 | -30 |
| 58.1 | -56 | 21 | 6 |
|
|
|
27 | 516,001 | -1 |
| 58.1 | -28 | 21 | 6 |
|
|
|
28 – T | 516,000 | 1,350 |
| 58.1 | 455 |
|
| 667 |
| 228 |
Element Tension Breakdown – (FL) Fully Loaded – Normal
Individual drag components per element | ||||||||||
# | Running Tension (N) | Running Ten Diff (N) | Element Tonnage (t/h) | Wm+Wb (kg/m) | Lift Force (N) | Belt Force (N) | Idler Force (N) | Pulley Drag Force (N) | Feeder Pt. Force (N) | Extra Accessory Force (N) |
1 | 517,350 | 153 |
| 58.1 | 57 | 45 | 51 |
|
|
|
2 | 517,503 | 2,328 | 1,390 | 165.3 | 243 | 119 | 243 |
| 1,723 |
|
3 | 519,831 | 57,928 | 1,390 | 165.3 | 32,020 | 15,608 | 10,300 |
|
|
|
4 | 577,759 | 30,715 | 1,390 | 165.3 | 3,419 | 16,444 | 10,852 |
|
|
|
5 | 608,474 | 30,715 | 1,390 | 165.3 | 3,419 | 16,444 | 10,852 |
|
|
|
6 | 639,189 | 30,715 | 1,390 | 165.3 | 3,419 | 16,444 | 10,852 |
|
|
|
7 | 669,904 | 30,715 | 1,390 | 165.3 | 3,419 | 16,444 | 10,852 |
|
|
|
8 | 700,620 | 30,715 | 1,390 | 165.3 | 3,419 | 16,444 | 10,852 |
|
|
|
9 | 731,335 | 30,715 | 1,390 | 165.3 | 3,419 | 16,444 | 10,852 |
|
|
|
10 | 762,050 | 103,143 | 1,390 | 165.3 | 81,062 | 13,302 | 8,779 |
|
|
|
11 | 865,193 | 103,143 | 1,390 | 165.3 | 81,062 | 13,302 | 8,779 |
|
|
|
12 | 968,336 | 103,143 | 1,390 | 165.3 | 81,062 | 13,302 | 8,779 |
|
|
|
13 – M | 1,071,480 | -557,673 |
| 58.1 | -451 |
|
| 890 |
| 569 |
14 | 513,806 | -57 |
| 58.1 | -84 | 21 | 6 |
|
|
|
15 | 513,749 | -19,237 |
| 58.1 | -28,365 | 7,134 | 1,993 |
|
|
|
16 | 494,512 | -19,321 |
| 58.1 | -28,473 | 7,153 | 1,999 |
|
|
|
17 | 475,191 | -19,321 |
| 58.1 | -28,473 | 7,153 | 1,999 |
|
|
|
18 | 455,870 | 10,112 |
| 58.1 | -1,201 | 8,842 | 2,471 |
|
|
|
19 | 465,982 | 10,112 |
| 58.1 | -1,201 | 8,842 | 2,471 |
|
|
|
20 | 476,095 | 10,112 |
| 58.1 | -1,201 | 8,842 | 2,471 |
|
|
|
21 | 486,207 | 10,112 |
| 58.1 | -1,201 | 8,842 | 2,471 |
|
|
|
22 | 496,319 | 10,112 |
| 58.1 | -1,201 | 8,842 | 2,471 |
|
|
|
23 | 506,431 | 10,112 |
| 58.1 | -1,201 | 8,842 | 2,471 |
|
|
|
24 | 516,544 | -509 |
| 58.1 | -11,247 | 8,393 | 2,345 |
|
|
|
25 | 516,035 | -4 |
| 58.1 | -85 | 64 | 18 |
|
|
|
26 | 516,031 | -30 |
| 58.1 | -56 | 21 | 6 |
|
|
|
27 | 516,001 | -1 |
| 58.1 | -28 | 21 | 6 |
|
|
|
28 – T | 516,000 | 1,350 |
| 58.1 | 455 |
|
| 667 |
| 228 |
Element Tension Breakdown – (FL) Fully Loaded – Low
Individual drag components per element | ||||||||||
# | Running Tension (N) | Running Ten Diff (N) | Element Tonnage (t/h) | Wm+Wb (kg/m) | Lift Force (N) | Belt Force (N) | Idler Force (N) | Pulley Drag Force (N) | Feeder Pt. Force (N) | Extra Accessory Force (N) |
1 | 516,828 | 69 |
| 48.6 | 48 | 10 | 11 |
|
|
|
2 | 516,897 | 1,886 | 1,390 | 155.8 | 229 | 49 | 51 |
| 1,557 |
|
3 | 518,783 | 39,057 | 1,390 | 155.8 | 30,182 | 6,479 | 2,396 |
|
|
|
4 | 557,840 | 12,573 | 1,390 | 155.8 | 3,223 | 6,826 | 2,525 |
|
|
|
5 | 570,413 | 12,573 | 1,390 | 155.8 | 3,223 | 6,826 | 2,525 |
|
|
|
6 | 582,987 | 12,573 | 1,390 | 155.8 | 3,223 | 6,826 | 2,525 |
|
|
|
7 | 595,560 | 12,573 | 1,390 | 155.8 | 3,223 | 6,826 | 2,525 |
|
|
|
8 | 608,133 | 12,573 | 1,390 | 155.8 | 3,223 | 6,826 | 2,525 |
|
|
|
9 | 620,707 | 12,573 | 1,390 | 155.8 | 3,223 | 6,826 | 2,525 |
|
|
|
10 | 633,280 | 83,973 | 1,390 | 155.8 | 76,409 | 5,522 | 2,042 |
|
|
|
11 | 717,253 | 83,973 | 1,390 | 155.8 | 76,409 | 5,522 | 2,042 |
|
|
|
12 | 801,226 | 83,973 | 1,390 | 155.8 | 76,409 | 5,522 | 2,042 |
|
|
|
13 – M | 885,199 | -315,765 |
| 48.6 | -377 |
|
| 445 |
| 284 |
14 | 569,434 | -62 |
| 48.6 | -71 | 7 | 1 |
|
|
|
15 | 569,372 | -20,843 |
| 48.6 | -23,729 | 2,402 | 484 |
|
|
|
16 | 548,529 | -20,926 |
| 48.6 | -23,819 | 2,409 | 485 |
|
|
|
17 | 527,603 | -20,925 |
| 48.6 | -23,819 | 2,409 | 485 |
|
|
|
18 | 506,678 | 2,573 |
| 48.6 | -1,005 | 2,977 | 600 |
|
|
|
19 | 509,250 | 2,573 |
| 48.6 | -1,005 | 2,977 | 600 |
|
|
|
20 | 511,823 | 2,573 |
| 48.6 | -1,005 | 2,977 | 600 |
|
|
|
21 | 514,395 | 2,573 |
| 48.6 | -1,005 | 2,977 | 600 |
|
|
|
22 | 516,968 | 2,573 |
| 48.6 | -1,005 | 2,977 | 600 |
|
|
|
23 | 519,540 | 2,573 |
| 48.6 | -1,005 | 2,977 | 600 |
|
|
|
24 | 522,113 | -6,013 |
| 48.6 | -9,409 | 2,826 | 569 |
|
|
|
25 | 516,100 | -46 |
| 48.6 | -71 | 21 | 4 |
|
|
|
26 | 516,054 | -39 |
| 48.6 | -47 | 7 | 1 |
|
|
|
27 | 516,015 | -15 |
| 48.6 | -24 | 7 | 1 |
|
|
|
28 – T | 516,000 | 828 |
| 48.6 | 381 |
|
| 334 |
| 114 |
Element Tension Breakdown – (FL) Fully Loaded – High
Individual drag components per element | ||||||||||
# | Running Tension (N) | Running Ten Diff (N) | Element Tonnage (t/h) | Wm+Wb (kg/m) | Lift Force (N) | Belt Force (N) | Idler Force (N) | Pulley Drag Force (N) | Feeder Pt. Force (N) | Extra Accessory Force (N) |
1 | 517,803 | 171 |
| 58.8 | 58 | 51 | 63 |
|
|
|
2 | 517,975 | 2,569 | 1,390 | 166.1 | 244 | 131 | 303 |
| 1,890 |
|
3 | 520,543 | 62,241 | 1,390 | 166.1 | 32,171 | 17,301 | 12,769 |
|
|
|
4 | 582,784 | 35,115 | 1,390 | 166.1 | 3,435 | 18,228 | 13,452 |
|
|
|
5 | 617,899 | 35,115 | 1,390 | 166.1 | 3,435 | 18,228 | 13,452 |
|
|
|
6 | 653,015 | 35,115 | 1,390 | 166.1 | 3,435 | 18,228 | 13,452 |
|
|
|
7 | 688,130 | 35,115 | 1,390 | 166.1 | 3,435 | 18,228 | 13,452 |
|
|
|
8 | 723,245 | 35,115 | 1,390 | 166.1 | 3,435 | 18,228 | 13,452 |
|
|
|
9 | 758,361 | 35,115 | 1,390 | 166.1 | 3,435 | 18,228 | 13,452 |
|
|
|
10 | 793,476 | 107,072 | 1,390 | 166.1 | 81,445 | 14,745 | 10,882 |
|
|
|
11 | 900,548 | 107,072 | 1,390 | 166.1 | 81,445 | 14,745 | 10,882 |
|
|
|
12 | 1,007,620 | 107,072 | 1,390 | 166.1 | 81,445 | 14,745 | 10,882 |
|
|
|
13 – M | 1,114,693 | -606,045 |
| 58.8 | -457 |
|
| 1,334 |
| 853 |
14 | 508,648 | -57 |
| 58.8 | -86 | 22 | 7 |
|
|
|
15 | 508,591 | -19,055 |
| 58.8 | -28,746 | 7,230 | 2,461 |
|
|
|
16 | 489,536 | -19,139 |
| 58.8 | -28,855 | 7,249 | 2,468 |
|
|
|
17 | 470,398 | -19,139 |
| 58.8 | -28,855 | 7,249 | 2,468 |
|
|
|
18 | 451,259 | 10,794 |
| 58.8 | -1,217 | 8,961 | 3,050 |
|
|
|
19 | 462,053 | 10,794 |
| 58.8 | -1,217 | 8,961 | 3,050 |
|
|
|
20 | 472,848 | 10,794 |
| 58.8 | -1,217 | 8,961 | 3,050 |
|
|
|
21 | 483,642 | 10,794 |
| 58.8 | -1,217 | 8,961 | 3,050 |
|
|
|
22 | 494,437 | 10,794 |
| 58.8 | -1,217 | 8,961 | 3,050 |
|
|
|
23 | 505,231 | 10,794 |
| 58.8 | -1,217 | 8,961 | 3,050 |
|
|
|
24 | 516,026 | 3 |
| 58.8 | -11,398 | 8,506 | 2,895 |
|
|
|
25 | 516,029 | 0 |
| 58.8 | -87 | 65 | 22 |
|
|
|
26 | 516,029 | -29 |
| 58.8 | -57 | 21 | 7 |
|
|
|
27 | 516,000 | 0 |
| 58.8 | -29 | 22 | 7 |
|
|
|
28 – T | 516,000 | 1,803 |
| 58.8 | 461 |
|
| 1,001 |
| 341 |
Element Tension Breakdown – (IF) All Inclines + Flat Sections – High
Individual drag components per element | ||||||||||
# | Running Tension (N) | Running Ten Diff (N) | Element Tonnage (t/h) | Wm+Wb (kg/m) | Lift Force (N) | Belt Force (N) | Idler Force (N) | Pulley Drag Force (N) | Feeder Pt. Force (N) | Extra Accessory Force (N) |
1 | 517,803 | 171 |
| 58.8 | 58 | 51 | 63 |
|
|
|
2 | 517,975 | 2,569 | 1,390 | 166.1 | 244 | 131 | 303 |
| 1,890 |
|
3 | 520,543 | 62,241 | 1,390 | 166.1 | 32,171 | 17,301 | 12,769 |
|
|
|
4 | 582,784 | 35,115 | 1,390 | 166.1 | 3,435 | 18,228 | 13,452 |
|
|
|
5 | 617,899 | 35,115 | 1,390 | 166.1 | 3,435 | 18,228 | 13,452 |
|
|
|
6 | 653,015 | 35,115 | 1,390 | 166.1 | 3,435 | 18,228 | 13,452 |
|
|
|
7 | 688,130 | 35,115 | 1,390 | 166.1 | 3,435 | 18,228 | 13,452 |
|
|
|
8 | 723,245 | 35,115 | 1,390 | 166.1 | 3,435 | 18,228 | 13,452 |
|
|
|
9 | 758,361 | 35,115 | 1,390 | 166.1 | 3,435 | 18,228 | 13,452 |
|
|
|
10 | 793,476 | 107,072 | 1,390 | 166.1 | 81,445 | 14,745 | 10,882 |
|
|
|
11 | 900,548 | 107,072 | 1,390 | 166.1 | 81,445 | 14,745 | 10,882 |
|
|
|
12 | 1,007,620 | 107,072 | 1,390 | 166.1 | 81,445 | 14,745 | 10,882 |
|
|
|
13 – M | 1,114,693 | -606,045 |
| 58.8 | -457 |
|
| 1,334 |
| 853 |
14 | 508,648 | -57 |
| 58.8 | -86 | 22 | 7 |
|
|
|
15 | 508,591 | -19,055 |
| 58.8 | -28,746 | 7,230 | 2,461 |
|
|
|
16 | 489,536 | -19,139 |
| 58.8 | -28,855 | 7,249 | 2,468 |
|
|
|
17 | 470,398 | -19,139 |
| 58.8 | -28,855 | 7,249 | 2,468 |
|
|
|
18 | 451,259 | 10,794 |
| 58.8 | -1,217 | 8,961 | 3,050 |
|
|
|
19 | 462,053 | 10,794 |
| 58.8 | -1,217 | 8,961 | 3,050 |
|
|
|
20 | 472,848 | 10,794 |
| 58.8 | -1,217 | 8,961 | 3,050 |
|
|
|
21 | 483,642 | 10,794 |
| 58.8 | -1,217 | 8,961 | 3,050 |
|
|
|
22 | 494,437 | 10,794 |
| 58.8 | -1,217 | 8,961 | 3,050 |
|
|
|
23 | 505,231 | 10,794 |
| 58.8 | -1,217 | 8,961 | 3,050 |
|
|
|
24 | 516,026 | 3 |
| 58.8 | -11,398 | 8,506 | 2,895 |
|
|
|
25 | 516,029 | 0 |
| 58.8 | -87 | 65 | 22 |
|
|
|
26 | 516,029 | -29 |
| 58.8 | -57 | 21 | 7 |
|
|
|
27 | 516,000 | 0 |
| 58.8 | -29 | 22 | 7 |
|
|
|
28 – T | 516,000 | 1,803 |
| 58.8 | 461 |
|
| 1,001 |
| 341 |
Element Tension Breakdown – (DO) Declines Only – Low
Individual drag components per element | ||||||||||
# | Running Tension (N) | Running Ten Diff (N) | Element Tonnage (t/h) | Wm+Wb (kg/m) | Lift Force (N) | Belt Force (N) | Idler Force (N) | Pulley Drag Force (N) | Feeder Pt. Force (N) | Extra Accessory Force (N) |
1 | 516,828 | 69 |
| 48.6 | 48 | 10 | 11 |
|
|
|
2 | 516,897 | 268 |
| 48.6 | 71 | 15 | 49 |
| 132 |
|
3 | 517,164 | 13,542 |
| 48.6 | 9,409 | 2,020 | 2,113 |
|
|
|
4 | 530,706 | 5,359 |
| 48.6 | 1,005 | 2,128 | 2,227 |
|
|
|
5 | 536,065 | 5,359 |
| 48.6 | 1,005 | 2,128 | 2,227 |
|
|
|
6 | 541,424 | 5,359 |
| 48.6 | 1,005 | 2,128 | 2,227 |
|
|
|
7 | 546,783 | 5,359 |
| 48.6 | 1,005 | 2,128 | 2,227 |
|
|
|
8 | 552,142 | 5,359 |
| 48.6 | 1,005 | 2,128 | 2,227 |
|
|
|
9 | 557,501 | 5,359 |
| 48.6 | 1,005 | 2,128 | 2,227 |
|
|
|
10 | 562,860 | 27,342 |
| 48.6 | 23,819 | 1,721 | 1,801 |
|
|
|
11 | 590,202 | 27,342 |
| 48.6 | 23,819 | 1,721 | 1,801 |
|
|
|
12 | 617,544 | 27,342 |
| 48.6 | 23,819 | 1,721 | 1,801 |
|
|
|
13 – M | 644,885 | -75,452 |
| 48.6 | -377 |
|
| 445 |
| 284 |
14 | 569,433 | -62 |
| 48.6 | -71 | 7 | 1 |
|
|
|
15 | 569,371 | -20,843 |
| 48.6 | -23,729 | 2,402 | 484 |
|
|
|
16 | 548,529 | -20,926 |
| 48.6 | -23,819 | 2,409 | 485 |
|
|
|
17 | 527,603 | -20,925 |
| 48.6 | -23,819 | 2,409 | 485 |
|
|
|
18 | 506,678 | 2,573 |
| 48.6 | -1,005 | 2,977 | 600 |
|
|
|
19 | 509,250 | 2,573 |
| 48.6 | -1,005 | 2,977 | 600 |
|
|
|
20 | 511,823 | 2,573 |
| 48.6 | -1,005 | 2,977 | 600 |
|
|
|
21 | 514,395 | 2,573 |
| 48.6 | -1,005 | 2,977 | 600 |
|
|
|
22 | 516,968 | 2,573 |
| 48.6 | -1,005 | 2,977 | 600 |
|
|
|
23 | 519,540 | 2,573 |
| 48.6 | -1,005 | 2,977 | 600 |
|
|
|
24 | 522,113 | -6,013 |
| 48.6 | -9,409 | 2,826 | 569 |
|
|
|
25 | 516,100 | -46 |
| 48.6 | -71 | 21 | 4 |
|
|
|
26 | 516,054 | -39 |
| 48.6 | -47 | 7 | 1 |
|
|
|
27 | 516,015 | -15 |
| 48.6 | -24 | 7 | 1 |
|
|
|
28 – T | 516,000 | 828 |
| 48.6 | 381 |
|
| 334 |
| 114 |
Equipment Tags and Commodity Codes
Table of major items with description, tags, and commodity codes. | |||
Item | Description | Equipment Tag | Commodity Code |
Pulley | Pulley 1 | ||
Motor | Motor 1 | ||
Reducer | Reducer 1 | ||
Pulley | Pulley 2 | ||
Idlers | Carry | ||
Idlers | Return | ||
Belt | – |
CO2 Emission
Motor Power = 2800 KW
%Efficiency = 80%
Rated Power = 0.8 * 2800 = 2240 kw
1 unit electricity = 1 kwh
Hence, for one hour it will come out to be 2240 KWh
For generation for this much power, 3500 Kva generator will be required.
As per above table, the 2250 KW generator will require 159.6 gal of diesel/ hour.
Conveting it into kg = 604.15 Kg/hr
Carbon Dioxide Emissions Coefficients by Fuel | ||||||
Pounds CO2 |
| Kilograms CO2 |
| Pounds CO2 | Kilograms CO2 | |
Carbon Dioxide (CO2) Factors: | Per Unit of Volume or Mass |
| Per Unit of Volume or Mass |
| Per Million Btu | Per Million Btu |
For homes and businesses | ||||||
Propane | 12.68 | gallon | 5.75 | gallon | 138.63 | 62.88 |
Diesel and Home Heating Fuel (Distillate Fuel Oil) | 22.45 | gallon | 10.19 | gallon | 163.45 | 74.14 |
Kerosene | 21.78 | gallon | 9.88 | gallon | 161.35 | 73.19 |
Coal (All types) | 3,876.61 | short ton | 1,758.40 | short ton | 211.87 | 96.10 |
Natural Gas | 120.96 | thousand cubic feet | 54.87 | thousand cubic feet | 116.65 | 52.91 |
Finished Motor Gasolinea | 17.86 | gallon | 8.10 | gallon | 148.47 | 67.34 |
Motor Gasoline | 19.37 | gallon | 8.78 | gallon | 155.77 | 70.66 |
Residual Heating Fuel (Businesses only) | 24.78 | gallon | 11.24 | gallon | 165.55 | 75.09 |
Hence, the CO2 emission for the motor will be 159.6/10.19 = 15.66 Kg of CO2 per hour.
For one year, it will be 137202.74 Kg of CO2 produced.
Belt Supplier Data Sheet
Type Steel cord
Width 650 mm
Rating 8500 N/mm
Speed 3.60 m/s
Top / bottom cover thickness 19.0 x 11.0 mm
Total thickness 44 mm
Weight (new / worn) 58.1 / 48.6 kg/m
Modulus 612,000 kN/m
Tape length 7,825 m
Belt cycle time 36.2 min
Cross Sectional Loading
Material mass (wm) 107.3 kg/m
Combined mass (wm + wb) 165.3 kg/m
Edge distance (required / actual) 59 / 66 mm
Cross sectional area 0.037 m²
Cross sectional loading (utility / total) 88 % / 57 %
Bed depth 120 mm
Flooded belt tonnage 2,358 t/h
Flooded (wm + wb) 240.0 kg/m
Tension Summary | Running | Momentary |
Maximum tension (kN) | 1,115 | 1,353 |
Minimum safety factor | 4.96 | 4.08 |
Estimated Splice Data
Splice type 5-Step
Splice step length 1350 mm
Transition length (each side) 150 mm
22 degree bias angle 265 mm
Total splice length 7315 mm
Cable diameter 14.3 mm
Number of cables 31
Cable pitch / cable gap in splice 18.79 / 1.41 mm
Transition Lengths
Transition method CEMA 7
Tail transition length (inline) 3.40 m
Head transition length (inline) 4.50 m
System Information
Calculation method CEMA 5th
Conveyor Length / Height 3900 / 182.7 m
Ambient temperature range -35 to 35 °C
Kt factor at minimum temperature 2.48
Material Properties
Type Crushed Ore
Design Tonnage 1390 t/h
Density 2900 kg/m3
Maximum lump size 50 mm
Surcharge angle 20 deg
Drive Station
Type Not Specified
Synchronous RPM 1800 RPM
Motor quantity / rating 1 / 2800 kW
Total installed power 2800 kW
Nominal empty / full power (42 / 76%) 1167 / 2125 kW
Min / max demand power (11 / 83%) 321 / 2330 kW
Maximum starting torque 150%
Pulley lagging type Rubber
Motor wrap angles 180
Idler Set Data
Carry | Return | |
Series name | Series 20 | Series 20 |
Bearing | 6204 | 6204 |
Number of rolls | 3 | 2 |
Trough angle (deg) | 35 | 10 |
Type | Inline | Inline |
Idler spacing (m) | 0.80 | 2.40 |
Pulley Details
Pulley diameter (Type 1) 2500 mm
Pulley diameter (Type 2) 2000 mm
Take-up Data
Type Gravity
Location Tail / Pulley #2
Required belt line tension 516 kN
Required pulley displacement 16.49 m
Idler Set Data
Carry | Return | |
Series name | Series 20 | Series 20 |
Bearing | 6204 | 6204 |
Number of rolls | 3 | 2 |
Trough angle (deg) | 35 | 10 |
Type | Inline | Inline |
Idler spacing (m) | 0.80 | 2.40 |
Roll diameter | 127 | 127 |
Roll rpm | 541 | 541 |
Total drag (N) | 8.0 | 5.4 |
Drag range (N) | 4.0 – 24.9 | 2.7 – 16.6 |
Roll length | 247 | 351 |
Shaft diameter (mm) | 20.0 | 20.0 |
Dynamic capacity (kN) | 13.5 | 13.5 |
L10 life1 (1000 hrs) | 24.5 / 39.9 | 108.0 |
Shaft deflection (min) | 5.09 / 8.24 | 6.61 |
Number of idler sets | 4,898 | 1,630 |
Number of rolls | 14,694 | 3,260 |
Idler Set Data
Impact | Transition | |
Series name | ||
Bearing | ||
Number of rolls | 0 | 0 |
Trough angle (deg) | 0 | 0 |
Type | ||
Idler spacing (m) | 0.80 | 2.40 |
Roll diameter | 0 | 0 |
Roll rpm | 0 | 0 |
Total drag (N) | 0.0 | 0.0 |
Roll length | 0 | 0 |
Shaft diameter (mm) | 0.0 | 0.0 |
Dynamic capacity (kN) | 0.0 | 0.0 |
L10 life1 (1000 hrs) | 0.0 / 0.0 | 0.0 / 0.0 |
Shaft deflection (min) | 0.00 | 0.00 |
Number of idler sets | 0 | 0 |
Number of rolls | 0 | 0 |
1 L10 life above which 95% of idlers exceed
System Information
Calculation method CEMA 5th
Conveyor Length / Height 3900 / 182.7 m
Ambient temperature range -35 to 35 °C
Kt factor at minimum temperature 2.48
Material Properties
Type Crushed Ore
Design Tonnage 1390 t/h
Density 2900 kg/m3
Maximum lump size 50 mm
Surcharge angle 20 deg
Cross Sectional Loading
Material mass (wm) 107.3 kg/m
Combined mass (wm + wb) 165.3 kg/m
Edge distance (required / actual) 59 / 66 mm
Cross sectional area 0.037 m²
Cross sectional loading (utility / total) 88 % / 57 %
Bed depth 120 mm
Flooded belt tonnage 2,358 t/h
Flooded (wm + wb) 240.0 kg/m
Belt Supplier Data Sheet
Type Steel cord
Width 650 mm
Rating 8500 N/mm
Speed 3.60 m/s
Top / bottom cover thickness 19.0 x 11.0 mm
Weight (new / worn) 58.1 / 48.6 kg/m
Tension Summary | Running | Momentary |
Maximum tension (kN) | 1,115 | 1,353 |
Minimum safety factor | 4.96 | 4.08 |