Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Measure and record the cross-section dimensions

 

 

Introduction

 

The purpose of this lab is to study the behavior of axially loaded compression members. The experiment focuses on two parameters affecting the load capacity of slender members in compression: length and support conditions. We will be using the 100kN Instron 5582 Universal Testing Machine to test eight steel bars with constant cross-section and different lengths. The specimens will be tested to failure. Support conditions will vary from pinned to fixed ends and combinations of these.

 

Procedure

 

Measure and record the cross-section dimensions and the length for all specimens. Calculate the expected theoretical buckling load using Euler’s formula. Test the specimens and record the experimental buckling load.

 

Formulas:

σcr = Critical stress

A = area of the column

I = moment of inertia

E = Modulus of elasticity = 200 GPA

r = radius of gyration

P = Applied Load

 

 

Results

 

Given data

 

Table 1 Column Dimensions

 

 

Column Dimensions 

 

b

h

 

12.555

6.4

 

12.55

6.4

 

12.55

6.5

 

12.6

6.35

 

12.6

6.35

Average

12.571

6.4

 

 

Table 2 Effective lengths of the columns

 

Columns

Support Conditions

L'(mm)

1

Pinned-Pinned

118

2

Pinned-Pinned

143

3

Pinned-Pinned

170

4

Pinned-Pinned

195

5

Pinned-Pinned

250

6

Pinned-Pinned

300

7

Pinned-Pinned

350

8

Pinned-Pinned

225

9

Fixed-Pinned

220

10

Fixed-Fixed

180

 

 

Table 3 Calculated values of stress and load for theoretical and experimental data

 

Spec

Area

Moment of inertia (I)

L’

r

L’/r 

(L’/r)2

Theoretical

Experimental

P’cr

σ’cr

Pcr

σcr

mm2

mm4

mm

 mm

mm

mm2

kN

MPa

kN

MPa

1.00

80.45

274.62

118.00

1.85

63.87

4079.30

4.2

52.20

4.37

54.29

2.00

80.45

274.62

143.00

1.85

77.40

5990.92

5.59

69.48

5.61

69.68

3.00

80.45

274.62

170.00

1.85

92.02

8466.80

8.9

110.62

9.09

112.97

4.00

80.45

274.62

195.00

1.85

105.55

11140.14

13.7

170.28

13.93

173.18

5.00

80.45

274.62

250.00

1.85

135.32

18310.55

17.23

214.16

17.27

214.67

6.00

80.45

274.62

300.00

1.85

162.38

26367.19

7.45

92.60

24.85

308.86

7.00

80.45

274.62

350.00

1.85

189.44

35888.67

5.4

67.12

37.03

460.22

8.00

80.45

274.62

225.00

1.85

121.78

14831.54

11.2

97.45

11.51

100.12

9.00

80.45

274.62

220.00

1.85

119.08

14179.69

21.01

182.76

21.10

183.55

10.00

80.45

274.62

180.00

1.85

97.43

9492.19

29.08

253.01

29.00

252.33

 

Table 4 the experimental values of k

 

Spec

Area

Moment of inertia (I)

Pcr

K

 
 

mm2

mm4

kN

Exp

Theo

 

8.00

80.45

274.62

11.51

0.96

0.70

 

9.00

80.45

274.62

21.10

0.73

0.70

 

10.00

80.45

274.62

29.00

0.76

0.70

 
       

 

Figure 1 Plot Stress vs. L’/r

 

 

Conclusion

 

The difference between the theoretical and experiential values is 0.2 to 0.8 kN. This may be due to the loading placements or machine calibration tolerances. The error in the reading is less than 5% so it’s acceptable. Also from the plot between stress and L’/r, it’s a straight line for the pinned support.

 

References

 

  1. Timoshenko, S. P.; Gere, J. M. (1961). Theory of Elastic Stability (2nd ed.). McGraw-Hill.
  2. Nenezich, M. (2004). “Thermoplastic Continuum Mechanics”. Journal of Aerospace Structures. 4.
  3. Koiter, W. T. (1945). The Stability of Elastic Equilibrium (PDF) (PhD Thesis).
  4. Rajesh, Dhakal; Maekawa, Koichi (2002). “Reinforcement Stability and Fracture of Cover Concrete in Reinforced Concrete Members”. Journal of Structural Engineering.